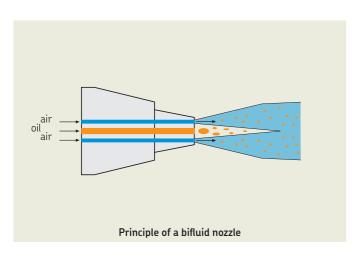


SKF VectoLub

External minimal quantity lubrication systems

SKF VectoLub minimal quantity lubrication system


The SKF minimal quantity lubrication (MQL) system offers a clean and inexpensive alternative solution for projecting oil in minimal quantities. It allows the projection of oil, with a viscosity of 10 to 400 mm²/s, in very small quantities, from 3 to 90 mm³/stroke.

SKF VectoLub Technology

SKF VectoLub technology has already been proven for many years. It is based on a combination between very small doses of oil (3 to 90 mm³), powered by pneumatically actuated volumetric micropumps, and a flow of pressurised air called "carrier air".

The oil and the air are routed in parallel through a coaxial hose to a bifluid spray nozzle. The air, which becomes turbulent in the nozzle, breaks down the dose of oil at the nozzle outlet into very small microdroplets (200 to 600 μm), and transports them to the lubrication point to form a very homogeneous oil film without formation of oil mist.

This technology helps to optimise lubrication efficiency, reduce oil consumption, and maintain the health and safety of workstations.

Applications

- Application of lubricant during metal deformation operations: stamping, cutting, punching, stretching, bending, etc.
- Lubrication of conveyor belts and drive belts.
- Lubrication of cutting tools: sawing, drilling, tapping, milling, etc.
- Lubricant applied to components before assembly.
- Coating to protect parts and profiles.

Benefits

- Applicator does not wear out, nor does it become polluted as the lubricant is applied without contact.
- Modular and customisable system.
- Saving on oil due to precise adjustment of the flow rate.
- Enhanced health and safety at the workstation, absence of mist and pollution of the ambient air.
- Easy to install. All external connections are made with quick connect fittings.

One system, two product ranges

VTEC Unit

Modular MQL unit that can have up to eight outlets

- **Modularity**. Its modular construction allows the VTEC unit to be perfectly adapted to the application
- Scaleability. It is possible at any time to add, or even change different modules
- Versatility. A single VTEC unit can lubricate a variety of separate applications
- **Safety**. Each outlet can be controlled and monitored independently

Compact MQL unit that can have up to four outlets

- Savings. A less expensive alternative to the VTEC system
- **Size**. Compact unit and small size for installing as close to the application as possible
- Simplicity. A single control setting for all micropumps
- **Kit**. The VE1B can be sold in kit form (unit, reservoir, hoses and nozzles)

Description	VTEC	VE1B
Number of outlets Construction Number of circuits possible	1 to 8 modular 3	1 to 4 compact 1
For powering all types of nozzles Coaxial outlets – quick connect fittings Individual adjustment of carrier air flow rate Reservoir (oil supplied by gravity)	yes yes yes external	yes yes yes integrated 0.3 l or external
Possible options/variants B models of micropumps 1) Different models of micropumps on unit 2) Air inlet pressure gauge Air outlet pressure gauge Air outlet pressure switch Solenoid valve instead of pneumatic frequency generator Separate micropump air/carrier air control Special features, additional outlets or circuits	yes yes yes yes yes yes yes	yes no no no no yes no
l) Nozzles indicated in the instruction manual 2) Micropumps indicated in the instruction manual 3) According to the feasibility study by the SKF Service Centre		

Description of VectoLub components

General air solenoid valve (VTEC)

- Air supply to unit control:
 - Control air for micropumps and
 - Carrier air
- Controls the air for all slave modules (not equipped with general air solenoid valve) downstream
- Solenoid valve only available for the VTEC range
- It is fitted to a special base, index I (→ page 15)

Control air solenoid valve (VTEC/VE1B)

- Used alone:
 - Controls the micropump control air and thus the micropump beat frequency
- Used with a pneumatic frequency generator:
 - Controls the micropump control air
 - The micropump beat frequency is managed by the pneumatic frequency generator
- Solenoid valve available for the VTEC range
 - Used alone, base C (→ page 14)
 - Used with pneumatic frequency generator, base D (→ page 15)
 - Controls the air for all slave modules (not equipped with solenoid valve) downstream
- Solenoid valve available for the VE1B range

Pneumatic frequency generator (VTEC/VE1B)

- Controls the micropump beat frequency
 - Setting by steps: 3 strokes/s; 1 stroke/s; 1 stroke/2 s; 1 stroke/3 s;
 1 stroke/4 s; 1 stroke/7 s and 1 stroke/10 s
- Generator available for the VTEC range
 - Used alone, bases B (→ page 14)
 - Used with solenoid valve, bases D (→ page 14 and 15)
 - Controls the frequency for all slave modules (not equipped with generator) downstream
- Generator available for the VE1B range

Air pressure switch (VTEC)

- Controls the minimum pneumatic pressure necessary for the correct operation of the unit
- Only available for the VTEC range
 - Used on base with general air solenoid valve (base I), the pressure switch is set at 5 bar and controls the general air pressure
 - Used on all the other bases, the pressure switch is set at 0.3 bar and controls the carrier air pressure

Air pressure gauge (VTEC)

• Indicates the pneumatic pressure. A minimum pneumatic pressure is required for the correct operation of the system.

Micropump (VTEC/VE1B)

The micropump is the main element of the SKF VectoLub system. It supplies oil to the lubrication points.

To select the micropump, three criteria should be taken into account:

- The flow rate
- The setting mode
- The material of the micropump

The flow rate

Two flow rates are available:

- low flow rates: 3 to 30 mm³/stroke (adjustment by metering rings) or 10 to 30 mm³/stroke (adjustment by thumbwheel)
- **high flow rates**: 30 to 90 mm³/stroke (adjustment by rings or thumbwheel)

The flow rate is given in mm³ per stroke; the final flow rate, necessary for the application, will depend on the beat frequency of the micropump.

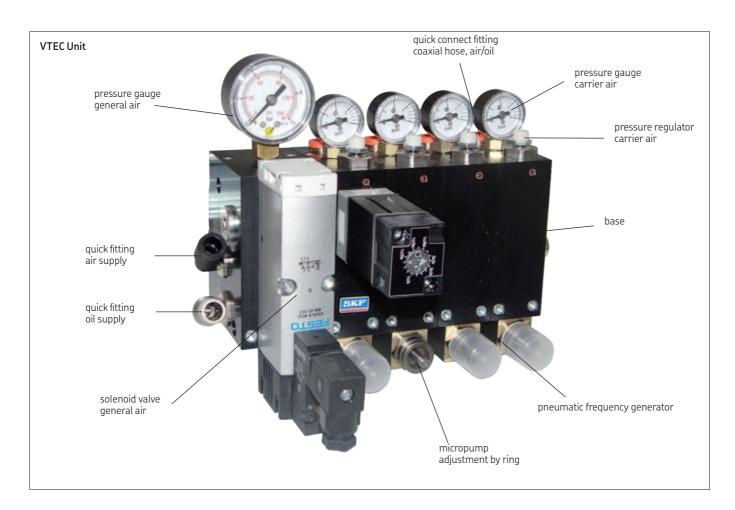
The setting mode

- Adjustment thumbwheel: for low flow rates, a full turn of the thumbwheel corresponds to a variation in flow rate of 5 mm³/ stroke; for high flow rates 15 mm³/stroke. It is possible to block the flow at zero. The minimum flow rate is guaranteed with two turns of the thumbwheel for low flow rates and for high flow rates.
- Metering rings: six rings for the low flow rates (0/3/5/10/15/20) and four rings for the high flow rates (0/30/45/60). To obtain the maximum flow rate from each pump, simply do not fit the adjustment ring.

The material of the micropump

Depending on environmental conditions, the material of the micropump may be important. The micropumps are available in either stainless steel (body) and brass (components) or only in stainless steel.

VTEC Unit


Description

The VTEC unit is a modular unit. It is made up of one to eight different modules. Each module allows lubrication of a lubrication point using a micropump.

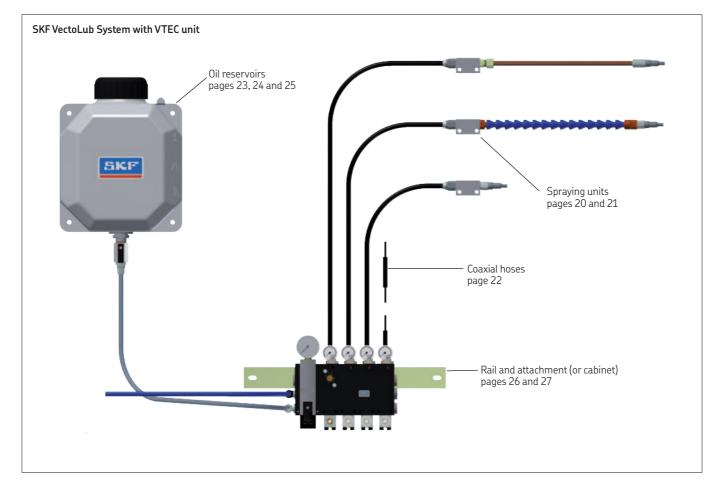
The VTEC unit can jointly or independently control and monitor the lubrication of several lubrication points. The user can therefore manage different independent lubrication circuits with a single unit.

The modular nature of the VTEC unit makes it possible to:

- Lubricate 1 to 8 lubrication points with a single unit
- Individually adjust the flow rate of a micropump corresponding to a lubrication point
- Adjust the lubrication frequency for a single lubrication point or multiple lubrication points together
- Adjust the carrier air flow independently for each lubrication point
- Visually (pressure gauge) or electrically (pressure switch) monitor the carrier air pressure individually for each lubrication point

Operation

When the VTEC unit is activated, it is supplied with pressurised air (5 to 8 bar maximum) and oil (0.1 to 0.5 bar).


The oil circulates through the various bases and is conveyed to the pneumatically controlled volumetric micropumps. The beat frequency of each micropump (maximum 3 strokes/second) is adjusted independently, either by a pneumatic frequency generator or by a solenoid valve by means of a PLC. The flow rate of the micropump can be adjusted in two different ways, depending on the case: with metering rings or with an adjustment thumbwheel.

The oil delivered by the micropump is routed to the coaxial outlet of the base and passes through the capillary of the coaxial hose.

The pressurised air also circulates through the various bases, but it is distributed in each of them. Some of the air is used to control the pneumatic micropumps. The other part of the air – called carrier air here – is routed to the coaxial outlet of the base and passes through the outer tube of the coaxial hose. The carrier air pressure can be adjusted with the pressure regulator located on the top of each base. The carrier air pressure can also be monitored either with a pressure gauge or with a pressure switch.

The carrier air and oil are therefore supplied under pressure in parallel in the coaxial hose to the projection nozzle. The carrier air then becomes turbulent in the nozzle and breaks down the oil into

microdroplets, which it will then spray onto the lubrication point without generating any mist. The size of the microdroplets (200 to $600 \mu m$) provides a homogeneous layer of oil without atomisation.

VTEC unit technical data
General

Number of modules 1 to 8

Minimum air supply 800 NI/min (100 NI/min per outlet) previously filtered dry air (5 µm)

Air supply pressure 5 to 8 bar

Micropump flow rate

Adjustment by rings (low flow rate)
Adjustment by rings (high flow rate) Adjustment by thumbwheel (low flow rate) Adjustment by thumbwheel (high flow rate)

Beat frequency

Lubricant

Effective viscosity (at temperature of use)

Operating temperature Attachment rail

3 to 30 mm³/stroke 30 to 90 mm³/stroke 10 to 30 mm³/stroke 30 to 90 mm³/stroke maximum 3 strokes/s

mineral, synthetic or biodegradable oils

10 to 400 mm²/s 10 to 50 °C type EN

General air solenoid valves (base I)

Flow rate (at 6 bar) Power supply +428

+429 +924 Protection Type of installation plan

Service life

950 Nl/min

230 V AC – 50/60 Hz – 2 VA (1.5 W) 115 V AC – 50/60 Hz – 2 VA (1.5 W)

 $24 \, \text{V} \, \text{CC} - 1.6 \, \text{W}$ IP 65 ISO size G01

 1.5×10^6 switching cycles

Pressure switch

Cut-off power Protection Maximum voltage Service life

Micropump control air solenoid valve

Flow rate (at 6 bar) Power supply

Protection

Type of installation plan Service life

Pneumatic frequency generator

Flow rate (at 6 bar)

Service life

Frequency

 1×10^6 switching cycles

100 VA

IP 65

42 V

150 Nl/min 230 V AC - 50/60 Hz - 2.5 W (+428)

115 V AC - 50/60 Hz - 2.5 W (+429) 24 V CC – 1 W (+924)

IP 65 cell base

 15×10^6 switching cycles

150 NI/min

 $> 10 \times 10^6$ switching cycles

0.166 to 3 Hz

VTEC unit size 330 30 188 204 air inlet, oil inlet, quick connect fitting for tube ext. Ø 8 mm quick connect fitting for tube ext. Ø 8 mm

Operating manual
For more information about the operation or
the technical data of the VTEC unit you can
consult the corresponding commissioning
manual, reference 951-130-440.

Coding of a VTEC unit

AVTEC unit is a modular unit that may comprise up to eight modules. The coding of a VTEC unit is carried out in three stages.

1/ Definition of the modules

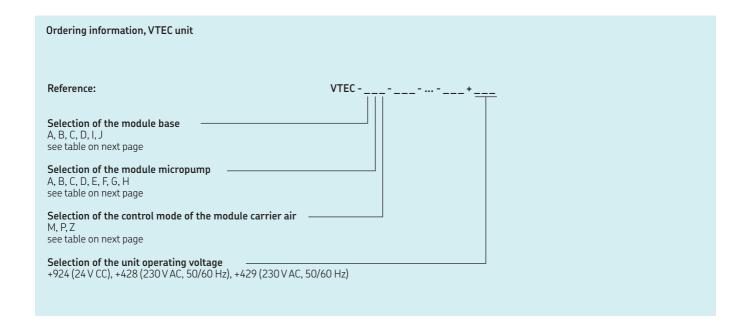
A lubrication module must be defined for each lubrication point. A module reference is made up of three letters, each corresponding to one of the module's components. To help you with your selection, you can refer to the table on the next page.

- First letter: selected base
- Second letter: selected micropump
- Third letter: air pressure control mode.

2/ Order of the modules

The order of the modules making up the VTEC unit must be defined, taking into account the desired number of circuits and control mode. The chosen functions (master or slave) are determined by the relative position of the module in relation to the entire VTEC unit, starting from the left (pneumatic and hydraulic supply side).

3/ Power supply


You must indicate the electrical voltage required for the VTEC unit using the corresponding voltage code:

- +924: 24 VDC
- +428: 230 VAC, 50/60 Hz
- +429: 115 VAC, 50/60 Hz

Reminder

In the case of a VTEC unit with electrical air control by pressure switch, the supply voltage will be exclusively 24 VDC for the whole unit. The voltage code is therefore +924.

All VTEC units are always supplied with quick connect fittings for air and oil supply, and a tool for fitting the coaxial hoses.

10 **SKF**

Coding of the modu	ıles
First character*	
A B C D	base only base with frequency generator base with solenoid valve base with frequency generator + solenoid valve base with general air solenoid valve base only (controlled by base I)
Second character**	
A B C D E F G H Z	micropump with ring adjustment, stainless steel and brass, maximum flow rate 30 mm³/stroke micropump with thumbwheel adjustment, stainless steel and brass, maximum flow rate 30 mm³/stroke micropump with ring adjustment, stainless steel, maximum flow rate 30 mm³/stroke micropump with thumbwheel adjustment, stainless steel, maximum flow rate 30 mm³/stroke micropump with ring adjustment, stainless steel and brass, maximum flow rate 90 mm³/stroke micropump with thumbwheel adjustment, stainless steel and brass, maximum flow rate 90 mm³/stroke micropump with ring adjustment, stainless steel, maximum flow rate 90 mm³/stroke micropump with thumbwheel adjustment, stainless steel, maximum flow rate 90 mm³/stroke no micropump (only base with general air solenoid valve)
Third character	
Z M P	no air control air flow rate pressure gauge air flow rate pressure switch

Example: BBM module with a base with pneumatic frequency generator (B), a low flow rate stainless steel and brass micropump (10 to 30 mm³/stroke) adjustable by thumbwheel (B) and a visual check of the carrier air by pressure gauge (M).

- Coding rules

 The order of the reference modules corresponds to the order of assembly of the VTEC unit
- The maximum number of modules for a VTEC unit is 8.
- The micropump of a slave module, without pneumatic frequency generator or solenoid valve (base J and A) is controlled by the upstream module equipped with a frequency generator and/or a solenoid valve.
- The module with the general air solenoid valve is the only module without a micropump. It is systematically placed upstream of the module(s) with micropump.

^{*)} See description of bases pages 14 and 15
**) See description of micropumps page 5

Examples of VTEC units

VTEC Unit

- Unit for a single lubrication circuit with four lubrication points
- The unit is put into operation by means of the general air solenoid valve
- The operator controls the frequency of all micropumps with the pneumatic frequency generator
- The operator can monitor the unit air pressure, as well as the carrier air pressure for each module
- The flow rate of each micropump goes from 10 to 30 mm³/stroke, with continuous adjustment by thumbwheel

• Coding: VTEC-IZM-BBM-ABM-ABM+___

- · VTEC unit with five modules
 - 1st module: general air solenoid valve, pneumatic pressure control with pressure gauge
 - 2nd module: pneumatic frequency generator, low flow rate micropump with flow rate adjustment by thumbwheel, control of carrier air pressure by pressure gauge
 - 3rd, 4th and 5th modules: without frequency control, low flow rate micropump with flow rate adjustment by thumbwheel, control of carrier air pressure by pressure gauge
- The unit voltage code depends on the operating voltage of the general air solenoid valve

VTEC Unit

- Unit for two lubrication circuits, the first with two lubrication points, the second with a single point
- The two circuits are put into operation by the general air solenoid valve
- The operator controls the frequency of the micropumps independently for each circuit with the control air solenoid valves (an activation of the solenoid valve corresponds to a beat of the micropump)
- The operator can monitor the carrier air pressure for each module
- The flow rate of each micropump goes from 3 to 30 mm³/stroke, with range adjustment by ring

• Coding: VTEC-IZZ-CAM-AAM-CAM+___

- VTEC unit with four modules
 - 1st module: general air solenoid valve, without pneumatic pressure control
 - 2nd module: solenoid valve, low flow rate micropump with flow rate adjustment by ring, carrier air pressure control by pressure gauge
 - 3rd module: without frequency control, low flow rate micropump with flow rate adjustment by ring, carrier air pressure control by pressure gauge
 - 4th module: solenoid valve, low flow rate micropump with flow rate adjustment by ring, carrier air pressure control by pressure gauge
- The unit voltage code depends on the operating voltage of the solenoid valves

12 **SKF**

VTEC Unit

- Unit for a single lubrication circuit with four lubrication points
- The unit is put into operation by the opening of the pneumatic power supply on the client side. The user should place a pneumatic control device (valve or preferably solenoid valve) upstream of the unit, if not the flow rate of the carrier air is continuous.
- The operator controls the frequency of all micropumps with the pneumatic frequency generator
- The operator can monitor the carrier air pressure for each module
- The flow rate of each micropump goes from 10 to 30 mm³/stroke, with continuous adjustment by thumbwheel
- Coding: VTEC-BBM-ABM-ABM
- VTEC unit with four modules
 - 1st module: pneumatic frequency generator, low flow rate micropump with flow rate adjustment by thumbwheel, control of carrier air pressure by pressure gauge
 - 2rd, 3th and 4th modules: without frequency control, low flow rate micropump with flow rate adjustment by thumbwheel, control of carrier air pressure by pressure gauge
- There is no voltage code because there is no electrical component

VTEC Unit

- Unit for two independent lubrication circuits, the first with three lubrication points, the second also with three points
- Start-up is independent for the two circuits by general air solenoid valves
- For the first circuit, the operator can manage a pause phase and a lubrication phase with the control air solenoid valve, and then manage the beat frequency of the micropumps during the lubrication phase with the pneumatic frequency generator.
- For the second circuit, the operator manages the beat frequency of the micropumps with the control air solenoid valve (an activation of the solenoid valve corresponds to a beat of the micropump)
- The operator monitors the general pneumatic pressure of the first circuit with a pressure switch (set at 5 bar), and of the second circuit with a pressure gauge
- The operator can monitor the carrier air pressure for each module
- The flow rate of each micropump goes from 10 to 30 mm³/stroke, with range adjustment by ring

• Coding: VTEC-IZP-DAM-AAM-AAM-IZM-CAM-AAM-AAM+924

- VTEC unit with eight modules
 - 1st module: general air solenoid valve, pneumatic pressure control with pressure switch
 - 2nd module: control air solenoid valve and pneumatic frequency generator, low flow rate micropump with flow rate adjustment by ring, control of carrier air pressure by pressure gauge
 - 3rd and 4th modules: without frequency control, low flow rate micropump with flow rate adjustment by ring, control of carrier air pressure by pressure gauge
 - 5th module: general air solenoid valve, pneumatic pressure control with pressure gauge
 - 6th module: control air solenoid valve, low flow rate micropump with flow rate adjustment by ring, carrier air pressure control by pressure gauge
 - 7rd and 8th modules: without frequency control, low flow rate micropump with flow rate adjustment by ring, control of carrier air pressure by pressure gauge
- The voltage code should be +924 (24 VDC) due to the presence of the pressure switch

VTEC unit bases

Base A

• Slave model

This base has no additional functionality. It is systematically a slave to the master base located upstream.

Base B

• Pneumatic frequency generator

The generator adjusts the beat frequency of the micropump. For controlling the air supply, this base is a slave to the base located upstream which has a general air solenoid valve.

Base C

• Air solenoid valve

The air solenoid valve controls the micropump. The beat frequency of the micropump is provided by the solenoid valve controlled by a PLC.

Base D

- Air solenoid valve
- Pneumatic frequency generator

The air solenoid valve controls the micropump and the pneumatic frequency generator adjusts the beat frequency of the micropump.

Base I

• General air solenoid valve

Special base. Unlike the others, it does not supply any lubrication point (no air regulator, no micropump). On the other hand, it has a general air solenoid valve.

The general air solenoid valve controls the air supply for the micropumps and also the carrier air. This base is systematically master of the bases located downstream.

This base is very important because it allows the VTEC unit to be able to lubricate different completely independent lubrication circuits.

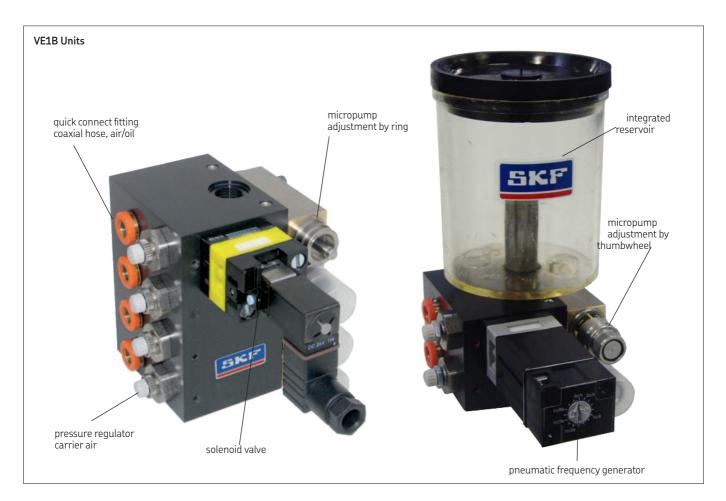
Base J

• Slave base

Must be controlled by a model I base (equipped with a general air solenoid valve) placed upstream.

VE1B Unit

Description


The VE1B unit is a compact unit. It is made up of a common base for one to four micropumps. Each micropump allows lubrication of a lubrication point.

The VE1B unit is assigned to a single lubrication circuit. Start-up and control of the beat frequency is common to all micropumps. However, the operator can independently adjust the flow rate of each micropump.

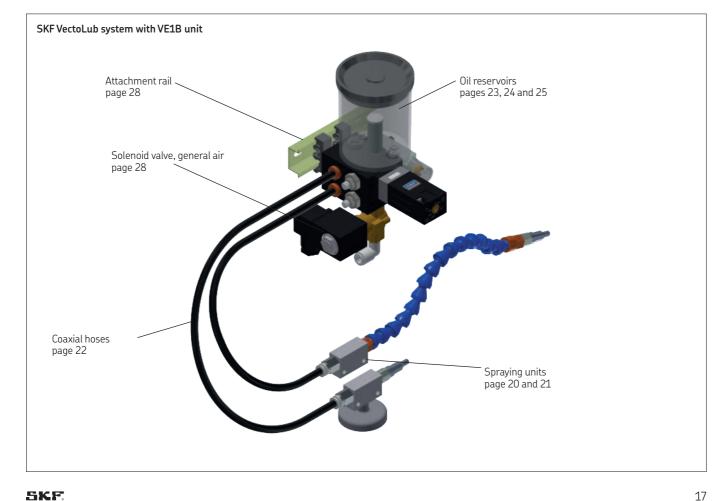
The size and the possibility of having an integrated reservoir allow the VE1B unit to be placed as close as possible to the lubrication points.

The VE1B unit is used to:

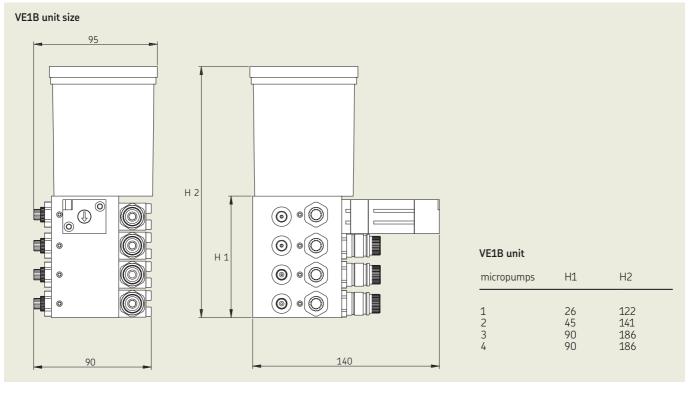
- Lubricate 1 to 4 lubrication points with a single unit
- Check the lubrication frequency for all lubrication points
- Independently adjust the carrier air flow for each lubrication point
- Individually adjust the flow rate of a micropump corresponding to a lubrication point

Operation

When the VE1B unit is activated, it is supplied, on the one hand, with pressurised air (from 5 to 8 bar maximum) and, on the other hand, with oil (0.1 to 0.5 bar).


The oil is supplied either from the integrated reservoir, with a capacity of 0.3 L, or from the user's supply network. The oil circulates through the base and is conveyed to the pneumatically controlled volumetric micropumps. The beat frequency of all the micropumps (maximum 3 strokes/second) is adjusted, either by a pneumatic frequency generator, or by a solenoid valve by means of a PLC. The user adjusts the flow rate of each micropump with metering rings or an adjustment thumbwheel.

The oil delivered by the micropump is routed to the corresponding coaxial outlet and passes through the capillary of the coaxial hose.


Air is also supplied from the user's network. It can optionally be controlled by means of a solenoid valve (option).

The pressurised air circulates through the base and is directed, on the one hand, to each of the pneumatic micropumps and, on the other hand, to the coaxial outlets to constitute the carrier air. A regulator allows the carrier air pressure to be adjusted independently for each outlet. The carrier air and oil are therefore supplied under pressure in parallel in the coaxial hose to the projection nozzle. The carrier air then becomes turbulent in the nozzle and breaks down the oil into microdroplets, which it will then spray onto the lubrication point without generating any mist.

With proper adjustment of the projected air, the size of the oil droplet is between 200 and 600 μm . It is thus possible to obtain a homogeneous layer of oil on the contact surface.

VE1B unit technical data General Number of outlets 1 to 4 Minimum air supply 400 NI/min previously filtered dry air (5 µm) Air supply pressure 5 to 8 bar Air inlet connector G 1/4 cylindrical Oil inlet connector. G 1/4 cylindrical Micropump flow rate Adjustment by rings (low flow rate) 3 to 30 mm³/stroke Adjustment by rings (high flow rate) Adjustment by thumbwheel (low flow rate) Adjustment by thumbwheel (high flow rate) 30 to 90 mm³/stroke 10 to 30 mm³/stroke 30 to 90 mm³/stroke Beat frequency maximum 3 strokes/s Lubricant mineral, synthetic or biodegradable oils 10 to 400 mm²/s Effective viscosity (at temperature of use) 10 to 50 °C Operating temperature Maximum weight (with integrated reservoir, and all options) 1.5 kg Micropump control air solenoid valve Flow rate (at 6 bar) 150 NI/min 230 V AC - 50/60 Hz - 2.5 W (+428) 115 V AC - 50/60 Hz - 2.5 W (+429) Power supply 24 V CC - 1 W (+924) IP 65 Protection Type of installation plan cell base 1.5×10^7 switching cycles Service life Pneumatic frequency generator 150 NI/min Flow rate (at 6 bar) Service life $> 1 \times 10^7$ switching cycles Frequency 0.166 to 3 Hz Integrated reservoir

0.3 litre

visual by transparency

Capacity
Oil level check

Ordering information, VE1 unit VE1B - ___- + __ Reference Control type 0 = without **P** = pneumatic frequency generator E = solenoid valve **Pumps** A = adjustment by rings, low rate (3 to 30 mm³/stroke), stainless steel and brass B = adjustment by thumbwheel, low flow rate (10 to 30 mm³/stroke), stainless steel and brass C = adjustment by rings, low flow rate (3 to 30 mm³/stroke), stainless steel **D** = adjustment by thumbwheel, low flow rate (10 to 30 mm³/stroke), stainless steel E = adjustment by rings, high flow rate (30 to 90 mm³/stroke), stainless steel and brass **F** = adjustment by thumbwheel, high flow rate (30 to 90 mm³/stroke), stainless steel and brass **G** = adjustment by rings, high flow rate (30 to 90 mm³/stroke), stainless steel H = adjustment by thumbwheel, high flow rate (30 to 90 mm³/stroke), stainless steel Number of micropumps -1, 2, 3 or 4 Reservoir -00 = without **10** = with integrated reservoir, 0.3 L Voltage code* **428** = 230 VAC, 50/60 Hz **429** = 115 VAC, 50/60 Hz 924 = 24 VDC 4-outlet VE1B unit, controlled by a pneumatic frequency generator, with reservoir, low flow rate stainless steel and brass micropumps with adjustment by thumbwheel, Reference: VE1B-PB4-10

Operating manual

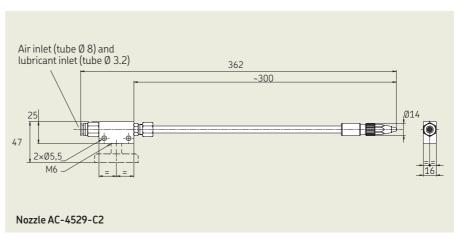
For more information about the operation or the technical data of the VE1B unit you can consult the corresponding commissioning manual, reference 951-130-441.

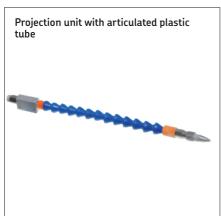
*) Specify the voltage code only when using a solenoid valve

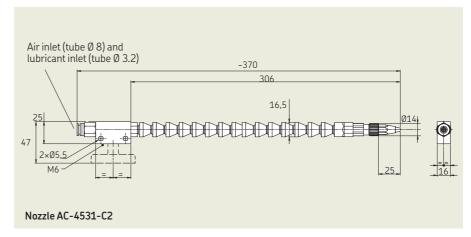
Accessories

Spraying units

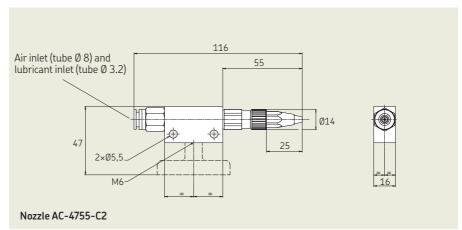
- The spraying unit comprises:
 - the nozzle
 - the attachment unit
 - the bi-fluid inlet connector
- The spraying unit may be:
 - direct
 - a flexible copper tube
 - an articulated plastic tube
- Four forms of jets available:
 - round, fine round, wide round and circular
- Special projection unit model for lubrication of saw bands
- Tube connection with quick connector

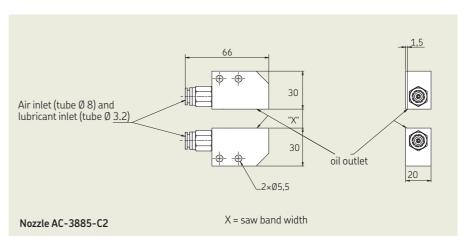



References for or	dering, projection unit				
Reference	Jet form	Jet data	Direct nozzle	Nozzle and articulated tube	Nozzle and flexible copper tube
AC-4755-C2 AC-4531-C2 AC-4529-C2	fine round jet	Ø 10 mm angle: approx. 10° distance ¹⁾ = 50 mm	•	•	•
AC-3539-C2 AC-3252-C2 AC-3184-C2	round jet	Ø 20 mm angle: approx. 20° distance ¹⁾ = 50 mm	•	•	•
AC-4255-C2 AC-4256-C2 AC-3485-C2	wide jet	120 × 40 mm angle: approx. 20°/60° distance ²⁾ = 100 mm	•	•	•
AC-3790-C2	circular jet	Max. Ø 150 mm variable height e.g.: Ø 80 × H 14 mm ISO VG 68 oil at 20°C			•
AC-3885-C2 ³⁾	multiple jet (saw)	adaptable to sawing height	•		


 $^{^{1)}}$ Test conditions: carrier air pressure 0.3 bar, LUB 200 oil, viscosity 90 mm²/s at 18 °C, micropump operation: 5 mm³/stroke – 3 strokes/s $^{2)}$ Test conditions: carrier air pressure 0.3 bar, oil viscosity 114 mm²/s at 18 °C, micropump operation: 5 mm³/stroke – 3 strokes/s

³⁾ A multiple jet nozzle requires the supply of air and oil to two micropumps.





Connection hoses

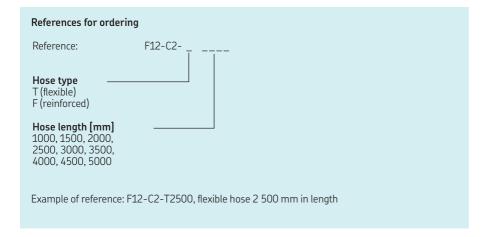
The connections between the SKF VectoLub unit and the projection units are made using coaxial hoses. The outer tube ensures the flow of the carrier air and the inner capillary that of the oil to be sprayed.

The connection is made by means of coaxial quick connect fittings.

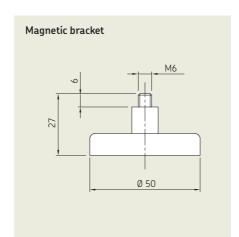
A specific tool* allows their disconnection.

* Tool delivered with every SKF VectoLub assembly.

Flexible hose


- Ext. tube polyurethane, section Ø 8 × 1.25
- Int. tube polyamide, section Ø 3.2 × 0.5
- Bend radius: 60 mm
- Operating temperature: 10 to 60 °C

Reinforced hose

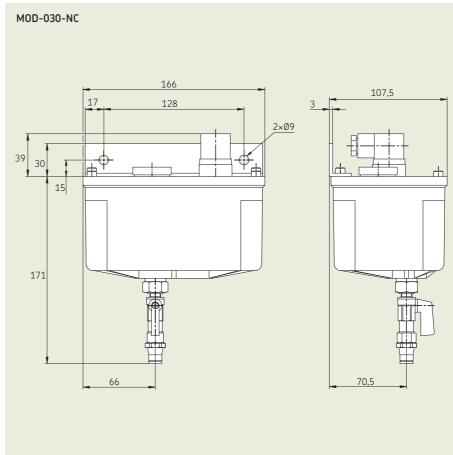

- Ext. tube reinforced braided rubber, section Ø 13 × 2.75, with end piece for Ø 8 quick connect fitting
- Int. tube polyamide, section Ø 3.2 × 0.5
- Bend radius: 90 mm
- Operating temperature: 10 to 60 °C

Attachment bracket

Magnetic base for attaching the projection units.

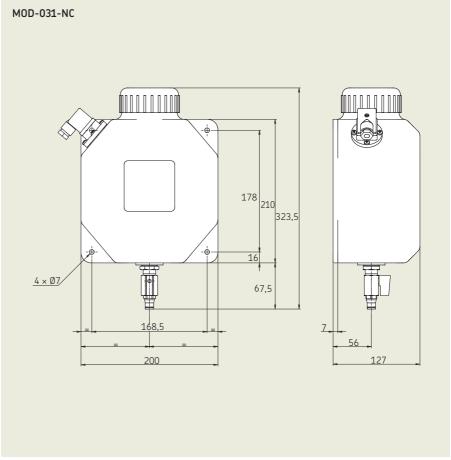
Oil reservoirs

Oil reservoirs for SKF VectoLub systems with a capacity of 1/3.5/6 or 10 litres.

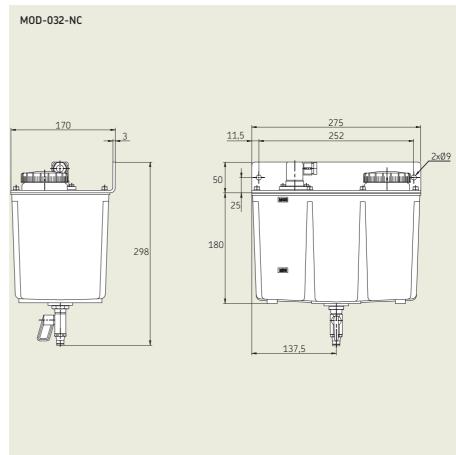

- Materials: polyethylene (PE), polyamide (PA) or aluminium; attachment bracket in bichromate zinc-plated steel.
- Visual check of the oil level.
- Level switch with float for checking for lack of oil (option).
- Filter screen on the outlet port.
- Isolation valve to isolate the tank in the event of an intervention on the SKF VectoLub unit.
- Supply line to the SKF VectoLub unit, polyamide type Ø 8 × 1, length 3 m, outlet port fitted with a quick connect fitting, complete connection kit supplied with each reservoir.

Reference	Useful capacity	Material	Contact level	Outlet filter	Operating temperature	Max. weight approx.
	l			μm	°C	kg
M0D-030	1	PA (polyamide)	_	55	-10 to +60	0.67
MOD-030-NC	1	PA (polyamide)	•	55	-10 to +60	0.67
MOD-031	3.5	PE (polyethylene)	-	200	-10 to +60	0.14
MOD-031-NC	3.5	PE (polyethylene)	•	200	-10 to +60	0.14
MOD-032	6	PA6 (polyamide)	-	200	-10 to +60	0.35
MOD-032-NC	6	PA6 (polyamide)	•	200	-10 to +60	0.35
MOD-033	10	aluminium	_	200	-10 to +60	6.55
MOD-033-NC	10	aluminium	•	200	-10 to +60	6.55

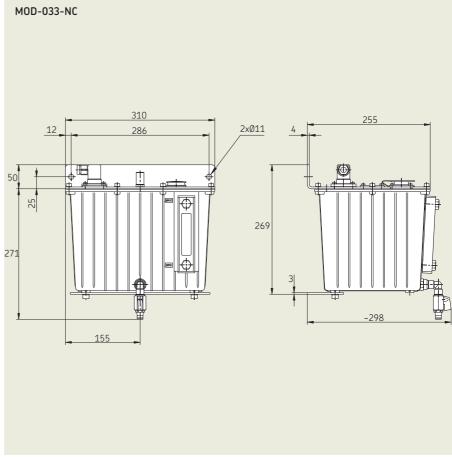
Level monitoring


- Minimum oil level check
- NO on opening due to lack of oil
- Maximum voltage: 250 V 50/60 Hz
- Cut-off power: 10 VA
- Max. current: 0.25 A
- Protection: IP 65 with fitting connected

Level monitoring


- Minimum oil level check
- NO on opening due to lack of oil
- Maximum voltage: 250 V 50/60 Hz
- Cut-off power: 10 VA
- Max. current: 0.5 A
- Protection: IP 65 with fitting connected

Level monitoring


- Minimum oil level check
- NO on opening due to lack of oil
- Maximum voltage: 250 V 50/60 Hz
- Cut-off power: 10 VA
- Max. current: 0.7 A
- Protection: IP 65 with fitting connected

Level monitoring

- Minimum oil level check
- NO on opening due to lack of oil
- Maximum voltage: 250 V 50/60 Hz
- Cut-off power: 10 VA
- Max. current: 0.8 A
- Protection: IP 65 with fitting connected

Accessories for VTEC unit

Attachment rail

The VTEC unit can be mounted directly in your control cabinet or on the frame of your machine, in an area protected from chip projections, by means of an attachment rail (clips supplied with the modules).

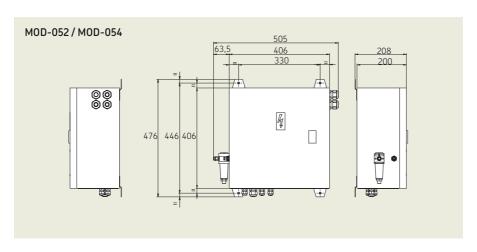
- Capacity of 2 to 8 modules.
- All the rails are in treated steel and EN standardised.

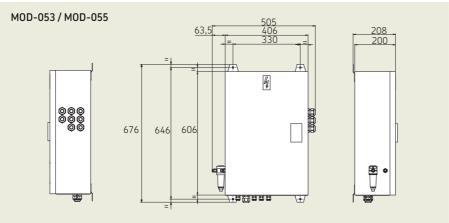
Attachment rail references			
Max number of module units	Dimensions $L \times H \times D$ [mm]		
2	105 × 35 × 15		
8	180 × 35 × 15 330 × 35 × 15		
	Max number of mod-		

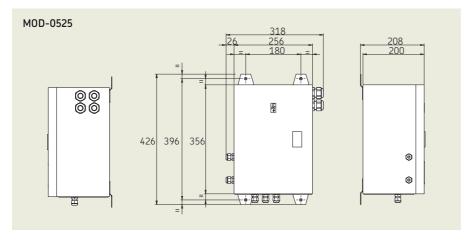
Attachment rail H = 6,5 1,5 8 13 L 13 8

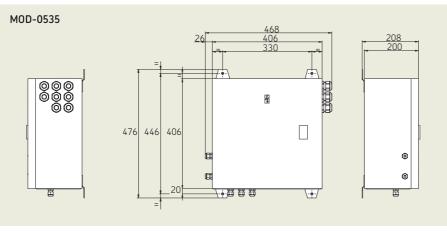
Protection boxes

Protection boxes have been specially designed to accommodate VTEC units.


- For VTEC units with 4 or 8 modules max.
- Boxes in lacquered 15/10 steel or 15/10 stainless steel.
- Routing of hoses and cables with cable gland:
 - fluid intake arrivals (air and oil) on the left side,
 - coaxial link outlets on the right side of the box
 - electrical connections at the bottom.


The stainless steel boxes are equipped with a transparent window for viewing carrier or operating air control signals.


All boxes are supplied complete with mounting brackets, the coaxial link disconnection tool and metering rings.


eference	Max number of ule units	mod- Material / colour	Window	Protection	Operating temperature
Standard boxes.	electrical terminal blo	cks, compressed air supply	/ filter		
MOD-052	4	steel / RAL 7032	-	IP 55	10 to 50 °C
MOD-054	4	stainless steel	•	IP 55	10 to 50 °C
MOD-053	8	steel / RAL 7032	_	IP 55	10 to 50 °C
MOD-055	8	stainless steel	•	IP 55	10 to 50 °C
Simplified boxes,	without electrical terr	minal block or compressed	air supply filter		
MOD-0525	4	steel / RAL 7032	- ' '	IP 55	10 to 50 °C
MOD-0535	8	steel / RAL 7032	_	IP 55	10 to 50 °C

26 **SKF**

Accessories for VE1B unit

General air solenoid valve

Placed upstream of the VE1B unit, the solenoid valve provides the pneumatic supply (carrier air and control air) to the assembly.

Reference MOD-1016+ ___*

Technical data

430 N.I/min Flow rate (at 7 bar)

230 V AC - 50/60 Hz - 2.5 W (+428) Power supply demand power 26 VA, holding power 14 VA

115 V AC – 50/60 Hz – 2.5 W (+429) demand power 26 VA, holding power 14 VA 24 V CC – 1 W (+924)

IP 65

Protection 1.5×10^6 switching cycles Service life Dimensions $82.5 \times 94 \times 30 \text{ mm}$ Weight approx. 0.2 kg

Rail and clips

Permanent mounting of VE1B unit, weight approx. 0.3 kg

Reference MOD-1011

Magnetic base

Mobile mounting of VE1B unit weight approx. 0.3 kg

Reference AC-3228-M1

Connectors

Quick connect fitting for oil supply (VE1B without reservoir),

G 1/4 connector for 8 Ø tube

Reference RC.802

Quick connect fitting for air supply, G 1/4 connector for 8 Ø tube

Reference RC.803.N

^{*} The reference of the solenoid valve must be completed with the voltage code key.

Lubricant

LUB-200

Synthetic biodegradable lubricating oil particularly suitable for SKF VectoLub external MQL system.

- Enhanced lubricating power, high resistance to thermal shock
- Absence of toxic components
- No need for cleaning before welding
- 98% biodegradable Method CEC LT 33A94

Standard applications:

• Machining - sawing, drilling, tapping, grinding, bar turning, stamping, cutting, punching, stamping, etc.

Technical data

Description Consideration	biodegradable oil
Specific density	0.916
Colour	blue
Base oil type	synthetic
Operating temperature range	10 to 50 °C
Base oil viscosity:	36 mm ² /s at 40 °C
	8 mm ² /s at 100 °C
Flash point	310 °C (NFT 60-118)
Run-off point	−21 °C (NFT 60105)
Packaging	2, 5 and 60 L drum

References for ordering			
Reference	Quantity		
LUB.200.2 LUB.200.5 LUB.200.60	2 l 5 l 60 l		

5KF 29

skf.com | skf.com/lubrification

® SKF and Lincoln are registered trademarks of the SKF Group.

© SKF Group 2020
The contents of this publication are the copyright of the publisher and may not be reproduced (even extracts) unless prior written permission is granted. Every care has been taken to ensure the accuracy of the information contained in this publication but no liability can be accepted for any loss or damage whether direct, indirect or consequential arising out of the use of the information contained herein.

PUB LS/P2 18970 EN · October 2020

This publication replaces publications 1-4400, 1-4401, 1-4402 and 1-4403 $\,$

Certain image(s) used under license from Shutterstock.com.